
Source of Acquisition 
NASA Marshall Space Flight Center 

David J. Macon* 
ATK Launch Systems, PO Box 707, M / S  243, Brigham City, UT 84302-0707 

Abstract 

An expression for the J-integral of a nonlinear elastic material is derived for an advancing 
crack in a tapered double cantilever beam fracture specimen. The elastic and plastic 
fracture energies related to the test geometry and how these energies correlates to the 
crack position are discussed. The dimensionless shape factors and qp are shown to be 
equivalent and the deformation J-integral is analyzed in terms of the qe[ function. The 
fracture results from a structural epoxy are interpreted using the discussed approach. The 
magnitude of the plastic dissipation is found to strongly depend upon the initial crack 
shape. 
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1-4.. l l L l  oduction 

The fracture capability of adhesive joints has been greatly enhanced by the use of ductile 

adhesives. These materials show an increase in toughness with crack growth (a rising R- 

curve). Many of these materials including composites have been tested and modeled. 

One of the most commonly used test methods is the cantilever beam geometry [1]-[4]. 

The total J-integral of the bonded beams is measured, and the results are used in fracture 

models {e.g., cohesive zone models). In the works previously cited, the calculation of the 

J-integral is based on linear elastic beam theory [ 11. The stiffness of the linear elastic 

beams is assumed to dominate any non-linear response from the adhesive. In this case, 

the J-integral is equal to the energy release rate. 

ASTM D 3433 [5] covers the determination of the mode I energy release rate of 

adhesives using a double cantilever beam geometry. In addition, it includes instructions 

for using a tapered double cantilever beam (TDCB). The taper is designed so that the 

compliance of the beam is independent of crack length. Assuming that linear elastic 

beam theory applies, the only measured parameter required for establishing the energy 

release rate is the load. Also, the test method does not give any recommendation for 

introducing a sharp crack into the specimen. Specimen loading starts with a blunt crack. 

Once the crack starts propagating, the averaged load is used to calculate the energy 

release rate. 

The test method described in ASTM D 3433 [5] does not explicitly calculate the 

toughening resulting from plastic deformation, which is a significant part of the 
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toughening mechznism. For mbber-toughened epoxies, the most significant pa3 of the 

energy absorption results from cavitation of the particles and shear deformation of the 

epoxy matrix [6]-[9]. Subsequent unloading of the matrix also plays a significant part in 

the energy dissipative mechanism [ 101. The characterization of these dissipative 

processes is an important part of understanding the fracture properties of an adhesive. 

The intent of this paper is to measure the plastic component of the deformation J-integral 

for a growing crack for a double cantilever beam with a tapered geometry. The results 

are used to analyze the plastic J-integral of fracture data that was generated according to 

ASTM D 3433 [5]. The effect of precracking on the measured J-integral is also 

examined. 

Deformation J-Integral 

In an elastic material, the strain energy is independent of the loading history. The energy 

absorbed during crack growth in a nonlinear elastic material, however, exhibits history 

dependence. Rice developed a path independent approach called the J-integral to 

describe this behavior [ l l ] .  The J-integral defines the energy release rate for a nonlinear 

elastic material as 

- a(u - F )  J =  
aA 
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where U is the s t r ~ n  energy stored in the body, F is the work done by externd forces, 

and A is the crack area. The J-integral can be used for measuring fracture energy that is 

plastically dissipated during fracture in a material. 

If the crack advances at a fixed displacement, there is no external work and Equation (1) 

reduces to 

-au J = -  
dA 

The strain energy for a fixed displacement rate can be written as 

0 

where P is the applied load and A is the displacement. 

Substituting Equation (3) into Equation (2) yields 

A 

J=-[(g)p 0 

If the specimen is of uniform width, B , with a crack of length, a ,  Equation (4) becomes 
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Ernst et al. [ 121 proposed that the load can be written as separable multiplicative 

functions as 

P = F(A)H(u)  

where F ( A )  is a function of displacement and H ( a )  is a function of crack length. 

If the deformation is restricted to the remaining ligament length, b , Equation (6) can be 

rewritten as 

P = F(A)K(b)  

where K(b)  is a function of ligament length. By noting that au = -ab, one can obtain 

ap 
au - from differentiation of Equation (7) 

Substitution into Equation ( 5 )  gives 
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Equation (9) is often written as [ 131 

Bb 
0 

. The J-integral is often divided into an elastic and plastic b aK(b) where q = -- 
K(b)  ab 

component [ 141 

where the el and p subscripts refer to the elastic and plastic contributions, respectively. 

The use of Equation (1 1) allows the elastic and plastic contribution of the total J-integral 

to be established, assuming that the dimensionless constants qel and qp are known. 

So far the discussion has been restricted to a static crack. When the crack starts to 

advance, a significant portion of the stored energy is released in the plastic wake that 

forms behind the growing crack [lo]. Consequently, an unambiguous definition of 
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energy release rate does not exist for a crack grov/ing in a nonlinear elastic material. One 

common approach is to define a psuedo energy release rate called the deformation J- 

integral [15], which equals the rate of energy dissipated as the crack advances. This can 

be illustrated by considering a crack that has grown to a length a2 from an initial length 

a,. This is illustrated in Figure 1. The top line shows the actual loading path. As the 

crack advances from a, to a2, energy is stored by the material and also dissipated in a 

plastic wake that forms behind the growing crack. The "actual loading path" no longer 

contains the accurate path for calculating the J-integral. The accurate description is given 

by a "deformation path", which is equivalent to loading the specimen again from scratch 

but at crack length a2. The area under curve OAB represents the strain energy in an 

elastic material with crack length a,. The area under curve OCD then represents the 

elastic strain energy for crack length a2. This strain energy is denoted, U, , where the 

subscript D refers to deformation theory. In Figure 1, U, is the area under the 

"deformation path" for the appropriate crack length. 
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Figure 1. Load versus displacement curve for deformation J-integrals. 

A deformation J-integral, JD for a nonlinear elastic body with a growing crack can be 

defined as 

Equation (12) can be rewritten in the following form 

The terms q , b , and U, will change as the crack length grows. The deformation J- 

integral can also be divided into an elastic and plastic contribution. The plastic 
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component of deformation J-integral, JDp , is ca!cG!ated incrementally from the following 

relation [ 151 

where P is the load, Ap is the plastic displacement, and y = qp - 1 + -- . The [ :p2) 
relation given above is an approximation and simplifying assumptions were used in its 

derivation. ASTM E 1820 [16] uses this approach for the calculation of J-R curves. The 

qp term needs to be evaluated as a function of crack length (or equivalently for ligament 

length) for the TDCB geometry. The notation denoting the deformation J-integral will be 

dropped with the implied assumption that the J-integral for an advancing crack is the 

deformation J-integral. 

q Derivation for a TDCB Geometry 

The q term described by Equation (10) allows calculation of the J-integral based on 

experimental load and displacement data. The q parameter is dependent on the fracture 

test geometry. The J-integral can be separated into elastic and plastic components as, 
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The qcl and qp pmmeters are not necessuily equal to each other, w.d must be 

determined independently or shown to be equivalent. 

For the double cantilever beam, qel can be found by considering the compliance, C , of 

the beams. Mostovoy et al. [ 171 calculated the compliance of beams by considering the 

contributions from bending and shear deflections as 

where E is Young's modulus, and h is the beam height at a distance, a ,  from the point 

of loading. They proposed that if the beam geometrj were designed so that the 

compliance changed linearly with crack growth, dC/da would be constant. The term in 

brackets is set equal to a geometric factor, m , and for this set of tests is equal to 35.43 

cm-' 151. Equation (16) assumes that the ends of the beam were "built-in" and that no 

rotation resulted. To correct this, they changed the crack length to aF = a + a,, where a ,  

is an empirical rotation correction. Kanninen [18] evaluated a, by considering the 

cantilever beam as being supported on a compliant foundation and found 

a, =: 0.64h 

Blackman et al. [ 191 used this result along with additional derivations to derive a 

compliance expression for the TDCB adherend as 
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where x, is a constant that represents the length of the straight section of the beam 

running from the load point to the beginning of the taper. The expression given in 

Equation (18) corrects for the effects of beam root rotation and for the actual profile of 

the TDCB adherend. 

For linear elastic conditions, the elastic component of the J-integral, Je l ,  is the same as 

the energy release rate, G , and can be found using the compliance expression given in 

Equation (1 8) 

where U,, =- PA,, andq,, = b(dCj. 
2 c aa 

To find qp , a separable form for the load function is chosen as P = F(A,)G(a,) . The 

function, G(a,) , is set equal to the reciprocal compliance given in Equation (18) 
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- 1  

G(aF)= C - 1  =-[a+0.64(&) EB 3 ' Y  3a23 / -5xo]  2 
8 nz 

This leaves an undefined function of displacement, F(Ap). Substituting this definition of 

load into Equation ( 5 )  gives 

AP 
J = -- 1 I.( C-'F(Ap))dA] 

B aa 

A" 

1 ac 
B C ~  aa 
-- b ( A p ) d A  - - 

The integration limits are only chosen over displacements where plastic dissipation 

occurs. 

By noting that P = F(A,)G(a,) and using Equation (20), the plastic contribution to the J- 

integral becomes 
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A, 

Then, Jp =- . For the tapered double 
Bb 

*el 

cantilever beam geometry, q p  = qer assuming that the compliance is not a function of 

displacement. The compliance function given in Equation (20) assumes linear elastic 

response of the beams, which is accurate for the experimental data presented in this 

paper. This derivation followed the approach given by Krasovskii et al. [20] where the 

same conclusion was reached for the straight double cantilever beam geometry. 

Experimental 

The .integral approach was testec, using cantilever beams of tlle tapered variety. The 

beams were made of D6AC steel and conformed to ASTM D 3433 [SI. A schematic of 

the specimen is shown in Figure 2. 

4 
Epoxy Resin 

I D6ACSteel -, / 

A 

I '  

Teflon Spacer - 
Teflon Spacer A i 

Figure 2. Geometry of the tapered double cantilever beam specimens. 
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The tapered double cantilever beam (TDCB) adherends were bonded using a thixotropic 

structural epoxy, TIGA 321', manufactured by Resin Technology Group (RTG). The 

structure properties of this adhesive have been discussed elsewhere [21]-[23]. Excess 

adhesive was applied to each beam and allowed to extrude out as the two adherends were 

pressed together. The extruded adhesive was removed from the side of the beams prior to 

curing. The bondline thickness was maintained at 0.127 cm using Teflon' spacers 

controlled to a 10% dimensional tolerance. After bonding, the specimens were placed in 

a jig that helped maintain alignment and a slight compressive load was applied. After an 

elevated temperature cure, the specimens were allowed to equilibrate at 22°C. 

Crack propagation gages [24] were applied to the adherends using TIGA 321@. In the 

tear region of the gage, adhesive was allowed to fully encapsulate the exposed conductive 

elements. This helped ensure that the crack propagation gage failed at the same rate as 

the TDCB specimen. After bonding the gages, the adhesive was cured at the same 

elevated temperature. The displacement was evaluated using clip on gages. Each gage 

was calibrated prior to testing. 

The bonded adherends were tested using a Satec' Unidrive. The tests were performed at 

cross-head speeds of 0.0127 cdmin .  Test temperatures of 22°C and 46°C were selected. 

An environmental chamber was used in conjunction with the Unidnve when temperature 

testing was required. 

Calculation of qel 
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The qel (and hence qp ) shape factor used to calculate J,i was derived using finite 

element (FE) analysis. The qel term was derived using ABAQUS FE code with a two- 

dimensional model of the tapered double cantilever beam with linear-elastic material 

constants. Eight-node plain-strain quadratic elements were used. Elastic constants of 

E = 204 GPa and 'u = 0.33 were used for the steel. The adhesive used E = 3.31 GPa 

and 'u = 0.38 for TIGA 321' at 22"C, and E = 1.72 GPa and 'u = 0.41 for TIGA 321' at 

46°C. An applied load of 4960 N and an adhesive thickness of 0.127 cm was used in the 

FEA modeling. The ligament length prior to crack growth is 17.9 cm. The qe, is 

calculated from Jel using the following expression 

For a linear elastic material, U,, can be written as U,, = - The elastic displacement, 
2 

Ael,  can be calculated with FEA. 

Figure 3 shows the FEA calculated elastic J-integral versus a for bondlines of TIGA 

321' at 22°C and 46°C. The figure includes the calculated J-integral for a steel bondline. 

Inspection of the figure shows that the shape of the J,, curves increases slightly as short 

crack length and then decreases until the crack length approaches 10 cm. At this crack 

length value, there is a sharp increase in J-integral value. 
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Figure 3. Linear-elastic J-integral versus crack length as calculated from FEA. 

Unlike G, , the calculated J-integral for the TDCB adherend is not independent of crack 

length. FEA calculations predict that the adhesive bondline is subjected to a fairly 

uniform strain energy level until the crack length approaches 10 cm. At that length, the 

input strain energy value increases rapidly to a magnitude that depends upon the bondline 

material. Experimental results support these conclusions. TIGA 321' tested at 22°C and 

at a crosshead displacement of 0.0127 cdminute has stable crack propagation until crack 

lengths ranging from 8.9-1 1.4 cm are reached. At which point, the crack propagation 

suddenly becomes unstable. This is associated with the adhesive no longer being able to 

stably dissipate the increase in strain energy. 
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The dimensionless qe, parameter is calculated using Equation (22). The re, function 

versus crack length is shown in Figure 4. From the figure, it can be seen that there is a 

slight dependence upon the bondline properties at short crack lengths. This dependence 

decreases with increasing crack length until a crack length of 10 cm is approached at 

which point the qe, values begin to diverge again. All J-integral calculations involving 

will be based upon TIGA 321' at 72°F. 
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Figure 4. qe, versus a for the TDCB geometry 

Table 1 contains Jel , A,, , and re, for TIGA 321' at 22°C. Interpolations between data 

points are easily done by a variety of mathematical methods. 
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Table 1. J,!, A,[: and qel for the TDCB geometry with TTGA 321' at 22'F. 

Accuracy of the finite element model 

A comparison was conducted between the compliance expression given in Equation (18) 
and the ABAQUS FE model. Eight-node biquadratic plane stress elements were assigned 
to the metallic beams. Similar nodes were assigned to the adhesive bondline except that 
plane strain elements were chosen. The beam elements were assigned linear elastic 
behavior. The adhesive elements were assumed to follow a Ramberg-Osgood plasticity 
model (deformation plasticity behavior in the ABAQUS model). The compliance of the 
FE model beam was determined. 

Figure 5 shows the calculated compliance from the Blackman model (Equation (1 8)) 
along with the compliance from FE calculations. The agreement between the two curves 
is excellent. The implication is that FE model behaves as expected. 
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Figure 5. Compliance versus crack length for Blackman and FE models. 

Results 

22°C Fracture Testing Results 

The load versus time trace for a TDCB adherend tested at 0.127 c d m i n  and 22°C is 

shown in Figure 6. Included in the illustration is the crack location as a function of time. 

It can be seen that the crack velocity is fairly constant until a crack length of 8.76 cm is 

reached. At which point,. the crack growth suddenly becomes unstable. 
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Figure 6.  Plot of load and crack position versus time for a TDCB specimen tested at 
22°C. 

Typical geometries used for generating R-curves are of the single edge notch bend 

(SENB) or deeply notched compact specimen varieties. These specimens are designed 

for testing bulk material and are assumed to have sharp cracks. In the case of the TDCB 

geometry, the specimen is more representative of the adhesive bondline. Ever since 

Bascom et al. [25] showed a strong dependence of critical strain energy on adhesive 

thickness, cantilever beam geometries have been a logical choice for characterizing the 

fracture behavior of adhesives. 

The J-integral up to the point of crack growth (-1000 seconds) can be calculated using 

Equation (1 1). The elastic displacement is calculated using FEA for each experimental 
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load value. The plastic displacement is found by subtracting the calculated elastic 

displacement from the total experimental displacement. Once the crack starts advancing, 

the plastic component of the J-integral is calculated using Equation (14). The total J- 

integral represents the summation of the elastic and plastic components. In calculating 

the J-integral, a smoothing algorithm was applied to the load and displacement data. 

Specifically, a routine was applied to both data sets through the piecewise use of a 

symmetric k-nearest neighbor linear square fitting in which k is adaptively chosen. 

Figure 7 shows the calculated R-curve, which depicts the total J-integral, elastic J- 

integral, and plastic J-integral versus crack length. Inspection of the figure shows a 

decrease in the total J-integral with increasing crack length. The plastic component of the 

J-integral also declines with increasing crack growth. The elastic component increases 

with increasing crack growth in a profile typical for R-curves. However the total J- 

integral is atypical. A normal R-curve profile increases in magnitude. In this case, the 

magnitude of the plastic component at small crack lengths represents a significant portion 

(-44%) of the total J-integral. At crack lengths approaching 2.54 cm, the elastic 

component begins to dominate. 
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Figure 7. J-integral for TIGA 321' tested at 22°C. 

The TDCB geometry described in ASTM D 3433-99 [SI assumes that "this test method 

depends upon the establishment of a sharp-crack condition in the bondline in a specimen 

of adequate size." No recommendations are given on how to precrack TDCB adherends. 

For data reported in this section, no precracking took place. The initial crack resulted 

from a blunt face starting at the leading edge of the adhesive bondline. This was modeled 

for the TDCB geometry using FEA analysis. The adhesive was assumed to follow the 

Ramberg-Osgood plasticity model. The results are shown in Figure 8, which depicts the 

plastic strain for mode I opening. The greatest amount of plastic strain occurs just prior 

to crack initiation. Once the crack starts to propagate, the extent of plastic strain 

decreases. This trend continues until a "steady-state" is reached. This would support the 
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observation shown in Figure 7 where the greatest amount of plastic dissipation occurs 

just prior to crack growth. 

Figure 8. Plastic strain profile for mode I opening an advancing crack in TIGA 321@ 
using a Ramberg-Osgood plasticity model 

46°C Fracture Testing Results 

The load and crack position versus time profile for an adherend tested at 46°C and 0.0127 

c d m i n  is shown in Figure 9. At this test temperature, the material strengthens 

significantly from a crack initiation load of approximately 4900 N up to a stable crack 

propagation load of approximately 11000 N. This represents an increase in load of over 

225%. Catastrophic failure occurs at a crack length approaching 9.5 cm as predicted by 

FEA analysis. The load increase from 4900 N to 11000 N represents a critical strain 

energy increase of over 500%. 
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Figure 9. Load and crack position profile for TIGA 321' tested at 46°C 

The calculated J-integral values are depicted in Figure 10. The total J-integral, elastic J- 

integral, and plastic J-integral are shown versus crack length. This J-integral profile is 

significantly different when compared to the curves generated at 22°C. The total and 

elastic J-integrals show an increasing R-curve type profile. The plastic J-integral 

decreases again with increasing crack growth but the overall magnitude is much less. 

This result might be expected because the glass transition temperature of TIGA 321' is 

being approached (-5 1.7"C). As the adhesive becomes softer and rubbery, the material 

undergoes less irreversible deformation. The plastic J-integral also reaches some 

negative values and is representative of the errors associated with Equation (14). 
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Figure 10. J-integral for TIGA 321’ tested at 46°F. 

Precracking of TDCB Specimens 

The effect of precracking on TDCB adherends was examined. A group of seven TDCB 

specimens was precracked by loading the adherends to 80% of their critical fracture load. 

Liquid nitrogen was then sprayed on the leading edge of the adhesive. This resulted in a 

sharp crack that jumped approximately 2 cm through the center of the adhesive. Another 

group of seven TDCB specimens was precracked by placing a PTFE film (-0.008 cm 

thickness) in the center of the adhesive bondline at the leading edge. Both precracked 

sets were pulled at 0.127 cm/min and 22°C. 
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Table 2 contains a summary of the plastic contribution to the total J-integral prior to 

crack initiation for these specimen sets. Included in the table are the results from a group 

of seven test specimens that were not precracked. Inspection of the table shows that the 

PTFE insert group was statistically equivalent to the specimens that were not precracked. 

The group precracked with liquid nitrogen showed a significant drop in plastic dissipation 

prior to crack growth when compared to the other groups. The latter method appears to 

be the more effective method for introducing a sharp crack. It should be noted that the 

bondlines used in this study were significantly thicker than bondlines tested elsewhere 

(e.g., 0.127 cm reported here versus 0.015 cm reported by Blackman et al. [19]). The 

thicker bondlines will allow more plastic deformation of the process zone and make the 

specimen more sensitive to precracking methods. 

Table 2. Averaged plastic J-integral contribution to the total J-integral just prior to crack 
growth. The standard deviation from a total of seven specimens per test group is 

included in the table. 

Conclusion 

A method for measuring the total J-integral for a TDCB adherend was described. Also 

included was an approach for evaluating the elastic and plastic contribution to the J- 

integral. An re, function for the TDCB geometry was evaluated using FEA, and was 

shown to be equivalent to Q. Testing showed that TDCB adherends with a blunt edge 
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had significant plastic deformation prior to crack growth. The plastic deformation 

decreased as the crack advanced. In addition, the extent of plastic deformation decreased 

as the glass transition temperature was approached. 

The ASTM describing TDCB testing recommends precraclung but gives no suggestions 

on how to accomplish this. PTEE inserts did little to alter Jp prior to crack growth. 

Loading the specimen and spraying the leading edge with liquid nitrogen sharply reduced 

the plastic deformation prior to crack growth. For the limited number of approaches 

reported here, precracking with liquid nitrogen gave the sharpest cracks. 
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Figure 1. Load versus displacement curve for deformation J-intcgrals. 

Figure 2. Geometry of the tapered double cantilever beam specimens. 

Figure 3. Linear-elastic J-integral versus crack length as calculated from FEA. 

Figure 4. qer versus a for the TDCB geometry 

Figure 5. Compliance versus crack length for Blackman and FE models. 

Figure 6. Plot of load and crack position versus time for a TDCB specimen tested at 

22°C. 

Figure 7, J-integral for TIGA 321' tested at 22°C. 

Figure 8. Plastic strain profile for mode I opening an advancing crack in TIGA 321' 

using a Ramberg-Osgood plasticity model 

Figure 9. Load and crack position profile for TIGA 321' tested at 46°C 

Figure 10. J-integral for TIGA 321' tested at 46°F. 
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Table 3. Je l ,  Ae,,  and ye[ for the TDCB geometry with TICA 321' at 22°F. 
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Precracking method 1 Blunt crack PTFE insert Liquid N:! 
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Jp percent 
contribution 

42.6 f 3.0 39.7 f 4.4 7.27 f 1.7 


